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Introduction 7

1 Introduction

This thesis is devoted to the study of representations of numbers. In particular, we are
interested in two major topics, firstly in positional representations of real numbers in
negative real base and secondly in the possibility of representing algebraic integers in a
given number field by means of algebraic units. In a particular case, we utilize a direct
connection between these two representation problems.

In the first part, we study the so-called (−β)-expansions, introduced by Ito and
Sadahiro [IS09] as an analogue to the β-expansions by Rényi [Rén57]. We propose a
generalization of (−β)-expansions and study its properties, with the emphasis on de-
ciding the admissibility of digit strings. Further we study the structure of the set Z−β
of (−β)-integers and demonstrate the exceptionality of confluent Parry numbers on the
similarity of the sets of β- and (−β)-integers and their close relation to the spectrum of
(−β).

In the second part of this work we start with generalizing the so-called unit sum
number problem, the problem of determining whether all algebraic integers of a given
number field can be represented by sums of units. We characterize under which conditions
are these representations possible. Finally, we study the so-called DUG-fields, fields with
the property that all algebraic integers can be expressed as sums of distinct units.

2 Overview of the field

2.1 Rényi β-expansions

The expansions of numbers in general real base β > 1 called β-expansions were introduced
by in [Rén57]. Defined on the unit interval [0, 1) and directly extended to all reals, they
led to countless interesting questions and problems, whether of combinatorial, dynamical
or arithmetical nature and were extensively studied since then. Recall that, for given
z ∈ [0, 1), the β-expansion of z is the digit string z1z2z3 · · · obtained by the formula

zi = bβT i−1(z)c , where T (z) = βz − bβzc is the so-called β-transformation .

Classification of all admissible digit strings, i.e. digit strings which can play the role of
the β-expansion of a number from [0, 1) was provided in [Par60]. Namely, it was proved
that a digit string x1x2x3 · · · with xi ∈ {0, 1, . . . , dβe − 1} is admissible if and only if

xkxk+1xk+2 · · · ≺lex d
∗
β(1) , for all k ≥ 1 ,

where d∗β(1) denotes the so-called infinite Rényi expansion of unity and ≺lex is the lex-
icographic order. Connections between algebraic properties of β and periodicity of β-
expansions were studied e.g. in [Sch80].

As a natural generalization of the set Z of integers, the set Zβ of β-integers was defined
in [BFGK98] as the set of real numbers with β-expansions of the form xk · · · x0 •0ω. Even
before the formal definition of β-integers, an important description of the structure of Zβ
follow from earlier works [Thu89] and [Fab95].

Both Zβ and related structures, for instance the set Fin(β) of numbers with finite
β-expansions, were studied from the arithmetical point of view. For instance, in [FS92] a
necessary condition for Fin(β) being a ring was given. Moreover, the so-called finiteness
property, given by the condition

Fin(β) = Z[1/β] ,
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was also studied there.
An important set connected to Zβ is the so-called spectrum of β, denoted by Xr(β)

and defined in general by

Xr(β) =
{ N∑

i=0

aiβ
i
∣∣∣ N ∈ N, ai ∈ {0, 1, . . . , r}

}
,

originally studied in [EJK90]. A result from [Fro92] can be reformulated in terms of the
notion of β-integers and the spectrum by saying that Xbβc = Z+

β if and only if β is a
generalized multinacci number, i.e. the algebraic integer with minimal polynomial of the
form

Xd −mXd−1 − . . .−mX − n , for some d ≥ 1,m ≥ n ≥ 1 .

In other words, for these bases β, which are often also called confluent Parry numbers,
it holds that any linear combination of nonnegative powers of β with coefficients from
{0, 1, . . . , bβc} is a β-integer, independently on whether the corresponding sequence of
coefficients is an admissible digit string or not.

Since the introduction of β-expansions, numerous generalizations have been studied,
mostly defined analogously, by means of a transformation iterated on an interval with a
suitably chosen digit formula. For example, [AS07] is concerned with expansions in base
β > 1 defined on the interval [−1

2
, 1

2
) with symmetric set of digits. More generalizations

of this concept were also studied e.g. in [Gór07] and [KS12].

2.2 Ito-Sadahiro (−β)-expansions

In 2009, Ito and Sadahiro [IS09] introduced the notion of (−β)-expansions, a straightfor-
ward negative base analogue to Rényi β-expansions. Their choice of the transformation

T (z) = −βz − b−βz − `c , for z ∈ [`, `+ 1) where ` = −β
β+1

,

leads to expansions of numbers from [ −β
β+1

, 1
β+1

) by infinite strings of digits from the al-
phabet {0, 1, . . . , bβc}. They also proved an analogue to the admissibility condition in
base β > 1, that a digit string over {0, 1, . . . , bβc} is admissible if and only if

d
( −β
β+1

)
�alt xkxk+1xk+2 · · · ≺alt d

∗( 1
β+1

)
, for all k ≥ 1 .

Here, ≺alt denotes the alternate order on infinite strings, d
( −β
β+1

)
is the (−β)-expansion

of the left endpoint of the given unit interval and d∗
(

1
β+1

)
is defined as the limit of

(−β)-expansions of numbers approaching the right endpoint from the left, in fact a direct
analogue to the infinite Rényi expansion of unity. The relation between these two reference
strings d

( −β
β+1

)
and d∗

(
1

β+1

)
is also given in [IS09]. Note that in contrast to the analogous

result on β-expansions, it is much more complicated to decide whether a given digit string
can play the role of d

( −β
β+1

)
for some β > 1 or not. An equivalent criterion for this was

given by Steiner in [Ste13]. Numerous interesting results on (−β)-expansions also from
the dynamical and ergodic points of view, were given in [IS09] as well as in many other
works.

In analogy with Parry numbers, Yrrap numbers were defined as those β > 1 with
reference string d

( −β
β+1

)
periodic. Connections between classes of Yrrap, Pisot and Salem

numbers, as well as arithmetics in base (−β) were studied in [FL11]
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In [Kal14], the relation between Rényi β- and Ito-Sadahiro (−β)-transformation was
studied. In particular, it was proved that these two are measurably isomorphic if and
only if β belongs to the class of confluent Parry numbers.

Following the chain of analogies and comparisons with β-expansions when studying
(−β)-expansions, the attention naturally turned to the set Z−β of (−β)-integers, which
represent one of the major topics of this thesis. Z−β can be defined either as the set
of real numbers with (−β)-expansions having zero fractional part, or by means of the
(−β)-transformation T−β and its preimages of zero as

Z−β =
⋃
i≥0

(−β)iT−i−β(0) .

The latter was chosen e.g. in [Ste12] where it is proved that if β is an Yrrap number,
Z−β can be encoded by an infinite word, obtainable as a fixed point of an antimorphism.
Note that this antimorphism is derived solely from the dynamical properties of (−β)-
transformation (using the notion of the so-called first return map) and does not work
with actual (−β)-expansions of elements of Z−β.

Primarily from the combinatorial and arithmetical point of view, the sets Z−β of (−β)-
integers and Fin(−β) of numbers with finite (−β)-expansions were studied for instance
in [MPV11], where the criterion for the finiteness property was given in case that β is a
quadratic Pisot number. Quadratic Pisot numbers were also studied in [MV14], where
the similarity of Z+

β and Z−β was discussed, also in connection to the spectra Xbβc(−β).

2.3 Representations of algebraic integers by sums of units

Second representation problem considered in this thesis, the representation of algebraic
integers in a given number field by its units, can be viewed as a special case of a very
rich topic, in particular of additive unit structure of rings. Given a ring R, its unit sum
number u(R) is defined as the minimal integer k such that any element of R is a sum of
at most k units of R, if such an integer exists. If it does not exist, then we put u(R) = ω
if every element is a sum of units, and u(R) = ∞ if not. The convention k < ω < ∞ is
used here, for all integers k. The task of determining the unit sum number, given a ring
R, is called the unit sum number problem. For a more detailed overview, we refer the
reader to the survey paper [BFT11].

The fundamental result about the additive structure of the rings of integers in number
fields is that there is no integer k such that every element of R is a sum of at most k units,
i.e. u(R) ≥ ω. After several partial results, the proof of this statement was eventually
given by Jarden and Narkiewicz in [JN07].

The so-called qualitative problem immediately follows from the result of Jarden and
Narkiewicz. Does there exist a criterion to determine whether the unit sum number u(OK)
is equal to ω or to ∞? Several criteria of this type do exist, but only for number fields of
low degree. In particular, the quadratic case was solved in [AV05] while pure cubic fields
were dealt with in [TZ07]. Similar results exist also for complex purely quartic fields.

When studying the additive unit structure of rings, one often finds that it is particu-
larly useful to be able to bound the possible lengths of nontrivial arithmetic progressions
in the group of units or in similar structures. This was achieved for units in [New90] and
consequently generalized in [BHP10] to algebraic integers of given positive norm m.
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2.4 Distinct unit generated fields

One can ask a similar question to the one connected to the unit sum number. Instead of
studying whether all algebraic integers in a given field are expressible as sums of units, one
may require these sums to consist of distinct units. Already in 1960’s, Jacobson in [Jac64]
observed that the two number fields Q(

√
2) and Q(

√
5) share the property that every

algebraic integer is the sum of distinct units. Moreover, he conjectured that these two
quadratic number fields are the only quadratic number fields with this property. Fields
with this property are called distinct unit generated fields or DUG-fields for short.

This problem was solved in [Śli74] for quadratic number fields and showed that even no
pure cubic number field is DUG. These results have been extended in [Bel76] to the case
of cubic and quartic fields. In the latter, the complete solution to the case of imaginary
cubic number fields was given. The problem of characterizing all number fields in which
every algebraic integer is a sum of distinct units is, similarly to the unit sum number
problem, still unsolved.

The following definition for measuring how far is a number field away from being a
DUG-field was introduced in [TZ11]. Given an algebraic number field K, its unit sum
height ω(K) = ω(OK) is the minimal integer k such that any element of OK can be ex-
pressed as a linear combination of distinct units with coefficients coming from {0, 1, . . . , k},
if such an integer exists. If it does not exist, then we put ω(K) = ω if every element is
a sum of units, and ω(K) = ∞ if not. Clearly, DUG-fields are then characterized by
property ω(K) = 1.

Moreover, the authors of [TZ11] developed a new approach for determining the unit
sum height of fields with unit rank 1. They were able to determine ω(K) for all quadratic
and pure cubic fields K. Nevertheless, their method was not suited for totally complex
fields, which ruled out the last class of fields with unit rank 1, the totally complex quartic
fields. These fields were studied separately in [HZ14] by different means and a partial
result was given there. In particular, a list of fields was provided, containing all DUG-
fields of this class, and it was conjectured that all fields in this list of candidates are indeed
DUG.

Assume that the fundamental unit ε of field K with unit rank 1 also generates the
integral basis of the ring of integers in, i.e. OK = Z[ε]. Then there exists a connection
between the DUG property of K and the finiteness property of ε, mentioned above. Both
these properties can be reformulated in terms of rewriting representations in base ε of one
given form into another one. Similar rewriting approach is used for instance in [FPS11] in
the realization of parallel addition in a complex base β. There is an important consequence
in a positional system allowing this parallel addition, namely that there exists a finite
alphabet A such that the set of numbers

∑k
i=` aiβ

i with ai ∈ A is a ring.

3 Results on the generalized (−β)-expansions

In this thesis, we propose the following generalization of (−β)-expansions, introducing a
parameter ` ∈ R. Note that unlike the conventions in the positive base numeration, we
distinguish expansions of numbers from the unit interval [`, `+ 1) from expansions of all
real numbers by using a notion of T−β,`-expansions.

Definition 1. Let β > 1, ` ∈ R. For any z ∈ [`, `+ 1), define d−β,`(z) = z1z2z3 · · · by

zi := b−βT i−1
−β,`(z)− `c , T−β,`(z) := −βz − b−βz − `c . (1)
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We call T−β,` : [`, ` + 1) → [`, ` + 1) a (−β, `)-transformation and d−β,`(z) a T−β,`-
expansion of z ∈ [`, `+ 1). If the values of β, ` are clear from context, one may use the
shorter notation T := T−β,`, d(x) := d−β,`(x).

It follows for any d−β,`(z) = z1z2z3 · · · of z ∈ [`, `+ 1) that

z =
z1

−β
+

z2

(−β)2
+

z3

(−β)3
+ . . . ,

where the alphabet A−β,` of T−β,`-expansions depends on the choice of ` and can be
calculated directly as

A−β,` := {b−`(β + 1)− βc, . . . , b−`(β + 1)c} . (2)

One may impose several restrictions on the choice of parameter ` ∈ R in order to
obtain various useful properties of T−β,`-expansions. In particular, throughout the work
we assume that

` ∈ (−1, 0] .

This choice ensures that zero is a valid digit and that d(0) = 000 · · · = 0ω. Moreover,
it allows to extend the definition of expansions from [`, ` + 1) to all real numbers in the
sense analogous to the definition of β-expansions. Further requirements are summarized
in the following:

� The alphabet A−β,` of T−β,`-expansions is equal to {0, 1, . . . , bβc} if and only if

−bβc+ 1

β + 1
< ` ≤ − β

β + 1
.

� The “shift invariance” property, d(x) = x1x2x3 · · · ⇒ d
(

x
(−β)k

)
= 0kx1x2x3 · · · , holds

if and only if

− β

β + 1
< ` ≤ − 1

β + 1
.

� The set Fin(−β, `) = {x ∈ [`, ` + 1) | T n(x) = 0 for some n ∈ N} of numbers with
finite expansions is different from {0} if and only if

− 1

β
or

1

β
∈ [`, `+ 1) .

3.1 Admissibility and reference strings

We prove an analogous result to the admissibility criteria given by Parry [Par60] for β-
expansions and by Ito and Sadahiro [IS09] for (−β)-expansions. The so-called strong
admissibility is introduced because it greatly simplifies the proper definition of unique
expansions of real numbers outside [`, `+ 1), as is demonstrated later in the thesis.

Definition 2. Let d1d2d3 · · · ∈ AN
−β,`, it is said to be (−β, `)-admissible or just admis-

sible if no confusion is possible, if there exists x ∈ [`, `+1) such that d−β,`(x) = d1d2d3 · · · .
The digit string d1d2d3 · · · ∈ AN

−β,` is said to be strongly (−β, `)-admissible or just
strongly admissible, if the digit string 0d1d2d3 · · · is admissible.
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Theorem 3. Denote d(`) = l1l2l3 · · · and d∗(` + 1) = r1r2r3 · · · . An infinite string
x1x2x3 · · · ∈ A−β,` is (−β, `)-admissible, if and only if

l1l2l3 · · · �alt xixi+1xi+2 · · · ≺alt r1r2r3 · · · , for all i ≥ 1 , (3)

where �alt denotes the alternate order on strings defined by

x �alt y ⇔ x = y or (−1)k(xk − yk) < 0 for k = min{i ≥ 1 | xi 6= yi} .

Although Theorem 3 covers a more general class of numeration systems than its ana-
logues, it does not provide us with an explicit description of the digit string d∗(` + 1) =
r1r2r3 · · · which plays a key role in the admissibility criterion. We call both the important
digit strings

d(`) = d−β,`(`) = l1l2l3 · · · , d∗(`+ 1) = d∗−β,`(`+ 1) = r1r2r3 · · ·

from the admissibility condition the reference strings. The following theorem states
the relation between d(`) and d∗(`) = limε→0+ d(` + ε), which can be of great use when
determining d∗(`+ 1).

Theorem 4. Let β > 1. If T q(`) 6= ` for all q ∈ N, or the equality T q(`) = ` occurs only
for even q ∈ N (i.e. if d(`) is not purely periodic with an odd period), then

d∗(`) = d(`) .

If on the other hand T q(`) = ` for some q ∈ N, q odd, i.e., d(`) = (l1l2 · · · lq−1lq)
ω,

then
d∗(`) = l1l2 · · · lq−1(lq − 1)d∗(`+ 1) .

An interesting problem is to determine what sequences may play the role of the left
and right reference strings in the admissibility condition, which is far more difficult than
the analogous question in the case of β-expansions. In this thesis, we explain the phe-
nomenon on two examples which, in fact, represent a counterexample to Theorem 25 of
Góra [Gór07] who approaches this problem in a more general setting. Note that both
necessary and sufficient condition for a given word from A−β,` to play a role of a reference
string corresponding to some β > 1 and ` ∈ (−1, 0] was eventually completely solved by
Steiner in [Ste13].

3.2 Periodicity

When studying periodic expansions of numbers in [`, ` + 1) ∩ Q(β) in base −β, we give
analogues to the results of Schmidt [Sch80] and Frougny with Lai [FL11] in the context
of generalized (−β)-expansions, valid for any ` ∈ (−1, 0].

Theorem 5. Let β > 1 and l ∈ (−1, 0]. If β is a Pisot number, then d(x) = d−β,`(x) is
periodic (eventually or purely) for any x ∈ [`, `+ 1) ∩Q(β).

Theorem 6. Let β > 1 and ` ∈ (−1, 0]. If any x ∈ [`, `+ 1) ∩Q has eventually periodic
d−β,`(x), then β is either a Pisot or a Salem number.
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3.3 (−β, `)-expansions of real numbers

We introduce the notion of (β, `)-expansions, the extension of d−β,`(x) to all reals, and
an analogue to the notion of β-expansions. We show that in contrast with β-expansions,
this extension from [`, ` + 1) (with ` ∈ (−1, 0]) is not always given uniquely, which is
illustrated on several counterexamples.

Definition 7. Let β > 1, ` ∈ (−1, 0]. Any expression of the form yl · · · y0 • y−1 · · ·
satisfying x =

∑
i≤l yi(−β)i, yl 6= 0 and yi ∈ A−β,` for all i ≤ l is said to be a (−β, `)-

representation of x.
A (−β, `)-representation yl · · · y0 • y−1 · · · is said to be admissible, if the digit string

ylyl−1 · · · is admissible.

In the positive base case, the β-expansion of any x ∈ R+ is constructed by dividing
x by a suitable power βk and finding dβ( x

βk ) = x1x2 · · · from which the β-expansion 〈x〉β
is obtained, and moreover, 〈x〉β does not depend on the particular choice of exponent k.
We derive the following observation, which leads us to a possible way how to properly
and uniquely define (−β, `)-expansions of all real numbers.

Proposition 8. Let β > 1, ` ∈ (−1, 0].

1. If ` ∈
( −β
β+1

, −1
β+1

]
, then for any z ∈ R there exists exactly one admissible (−β, `)-

representation.
2. If ` = −β

β+1
, then there exists a countable set of numbers z ∈ R with two distinct

admissible (−β, `)-representations, first one using the string d−β,`(`) = l1l2l3 · · · and
second one using the string 1l1l2l3 · · · . For all other z ∈ R, there exists exactly one
admissible (−β, `)-representation.

3. If ` /∈
[ −β
β+1

, −1
β+1

]
, then for uncountably many z ∈ R there exist at least two distinct

admissible (−β, `)-representations.

In all cases considered, i.e. if ` ∈ (−1, 0], there exists for any z ∈ R exactly one admissible
(−β, `)-representation zk · · · z0 • z−1 · · · of z with zkzk−1 · · · being strongly admissible.

Definition 9. For any x ∈ R, put k := min
{
i ≥ 0

∣∣ { x
(−β)i

, x
(−β)i+1

}
⊆ [`, ` + 1)

}
. The

(−β, `)-expansion of x, 〈x〉−β,`, is defined by

〈x〉−β,` :=

{
0 • d−β,`(x) if k = 0 ,
xk−1 · · ·x0 • x−1x−2 · · · if k ≥ 1 ,

where d−β,`(x/(−β)k) = xk−1xk−2xk−3 · · · .
Equivalently, 〈x〉−β,` is the admissible (−β, `)-representation xk · · ·x0 • x−1 · · · for

which xkxk−1 · · · is strongly admissible.

In analogy with the definition of β-expansions, we assign unique 〈x〉−β to each x ∈ R
as possible leading zeros are omitted. If 〈x〉−β ends with suffix 0ω, x is said to have finite
(−β, `)-expansion.

4 Results on the (−β)-integers

With the proper definition of of (−β, `)-expansions for all real numbers at hand, we
proceed to the definition of the set Z−β,` of the so-called (−β, `)-integers. Our aim is
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to present analogous results to those of Thurston [Thu89] and Fabre [Fab95] for the set
of β-integers, to describe the distances between consecutive (−β, `)-integers and give the
formula for morphisms generating the encoding of Z−β,` by an infinite word.

Definition 10. The set of (−β, `)-integers (or just (−β)-integers) is defined by

Z−β = Z−β,` := {x ∈ R | 〈x〉−β,` = xl · · ·x1x0 • 0ω} .

One can observe that the set Z−β,` is nonempty if and only if 0 ∈ A−β,`, i.e. if and
only if ` ∈ (−1, 0]. It is also self-similar (−βZ−β,` ⊆ Z−β,`) and it holds that Z−β,` = Z if
and only if β ∈ N.

A phenomenon unseen in Rényi numeration arises, there are cases when the set of
(−β, `)-integers is trivial, i.e. when Z−β = {0}. This happens if and only if both numbers
1
β

and − 1
β

are outside of the interval [`, `+ 1) or, equivalently, if and only if β < −1
`

and
β ≤ 1

`+1
.

Let us recall the equivalent definition of the set of β-integers,

Z+
β =

⋃
i≥0

βiT−iβ (0) .

In our general definition of (−β, `)-expansions with ` ∈ (−1, 0], it holds only that

Z−β,` ⊆
⋃
i≥0

(−β)iT−i(0)

and the equality can only be guaranteed if ` ∈
[ −β
β+1

, −1
β+1

]
. Note that this directly fol-

lows from the relation between admissibility and strong admissibility of digit strings (see
Proposition 8 and the following remark).

4.1 Distances between neighbors

In order to describe distances between adjacent (−β, `)-integers, we need some notation.
Denote by S(k) the set of infinite (−β, `)-admissible digit strings such that erasing a prefix
of length k yields 0ω, i.e. for k ≥ 0, we have

S(k) = {ak−1ak−2 · · · a00ω | ak−1ak−2 · · · a00ω is (−β, `)-admissible} ,

in particular S(0) = {0ω}. Denote by Max(k) the string ak−1ak−2 · · · a00ω which is maxi-
mal in S(k) with respect to the alternate order and by max(k) its prefix of length k, so
that Max(k) = max(k)0ω. Similarly, we define Min(k) and min(k). Thus,

Min(k) �alt r �alt Max(k) , for all digit strings r ∈ S(k).

Let us define a “value function” γ. Consider a finite digit string xk−1 · · · x1x0, then
γ(xk−1 · · ·x1x0) =

∑k−1
i=0 xi(−β)i. With this notation we can give a theorem describing

distances in Z−β,` valid for the cases ` ∈ (−1, 0].

Theorem 11. Let x < y be two consecutive (−β, `)-integers. Then there exist a finite
string w over the alphabet A−β,`, a nonnegative integer k ∈ {0, 1, 2, . . . } and digit d ∈
A−β,` such that w(d−1)Max(k) and wdMin(k) are strongly (−β, `)-admissible strings and

x = γ(w(d− 1) max(k)) < y = γ(wdmin(k)) for k even,
x = γ(wdmin(k)) < y = γ(w(d− 1) max(k)) for k odd.
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In particular, the distance y − x between these (−β, `)-integers depends only on k and
equals

∆′k :=
∣∣∣(−β)k + γ

(
min(k)

)
− γ
(
max(k)

)∣∣∣ . (4)

Note that the above theorem does not give an explicit formula for distances between
neighbors in Z−β,` analogous to the one in [Thu89]. This is due to very tedious discus-
sions necessary to describe the strings min(k),max(k) in a completely general situation.
Nevertheless, in the thesis we derive at least a recurrent formula for the extremal strings,
valid for ` ∈ (−1, 0] under no additional assumptions on β.

We would like to emphasize two major distinctions between the sets of β- and (−β, `)-
integers.

� In contrast with Z+
β , where we have ∆i ≤ 1 for all i ≥ 0, i.e. all gaps between

consecutive β-integers are of length at most 1, this bound does not in general hold
for Z−β,`.

� For any β > 1 it holds that Z+
β ) {0} is an infinite set. As was already mentioned

above, Z−β,` ⊆
⋃
i≥0(−β)iT−i(0) and, moreover, it may happen that Z−β,` = {0}.

We derive explicit formulas for distances in Z−β,` for Ito-Sadahiro case ` = −β
β+1

and
under some additional assumptions. Note that while this covers a large class of bases
−β, some interesting examples are excluded, one may mention for instance the confluent
Parry bases.

Theorem 12. Assume ` = −β
β+1

and set m = min{k ∈ N | d(`) = l1l2 · · · lk0ω} if the
minimum exists and m = +∞ if d(`) is not finite. If 0 < li and l1 > l2i for all i ≤ m,
then the distances between adjacent (−β, `)-integers take values

∆′0 = 1 ,

∆′k =
∣∣∣(−1)k +

∞∑
i=1

lk−1+i − lk+i

(−β)i

∣∣∣ , k ∈ {1, . . . ,m− 1} ,

∆′m =

{
1− lm

β
for m even ,

lm
β

for m odd ,

∆′m+1 =

{
∆′0 for m even with lm < l1 − 1 and for m odd ,

∆′1 for m even with lm = l1 − 1 ,

∆′k =

{
∆′0 for odd k ≥ m+ 2 ,

∆′1 for even k ≥ m+ 2 .

Moreover, all the distances are less than 2.

4.2 Encoding by infinite words

Let us now describe how we can code the set of (−β, `)-integers by an infinite word over
the infinite alphabet N.

Note that a similar study was performed by Steiner e.g. in [Ste12], where the antimor-
phisms generating encodings of Z−β,` (for case ` = −β

β+1
) were obtained by a completely

different approach, using the dynamical properties of (−β)-transformation T−β.
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Let (zn)n∈Z be a strictly increasing sequence satisfying

z0 = 0 and Z−β,` = {zn | n ∈ Z} .

We define a bidirectional infinite word over an infinite alphabet v−β ∈ NZ, which codes
the set of (−β, `)-integers. According to Theorem 11, for any n ∈ Z there exist a unique
k ∈ N, a word w with prefix 0 and a letter d such that

zn+1 − zn =
∣∣γ(w(d− 1) max(k))− γ(wdmin(k))

∣∣ . (5)

We define the word v−β = (vi)i∈Z by vn = k.

Theorem 13. Let v−β be the word associated with (−β, `)-integers. There exists an
antimorphism Φ : N∗ → N∗ such that Ψ = Φ2 is a nonerasing nonidentical morphism and
Ψ(v−β) = v−β. Φ is always of the form

Φ(k) =

{
Sk(k + 1)R̃k for k even,

Rk(k + 1)S̃k for k odd ,

where ũ denotes the reversal of the word u and words Rj, Sj depend only on j and on
min(k),max(k) with k ∈ {j, j + 1}.

Theorem 13 shows that a morphism over an infinite alphabet, fixing the word v−β,
exists for every β for which v−β can be defined. Such morphism can be explicitly described,
whenever strings min(k) and max(k) are known. We further study under which conditions
one can represent (−β, `)-integers by an infinite word over a restricted finite alphabet, so
that it is still invariant under a primitive morphism.

Proposition 14. Let v be an infinite word over the alphabet N, and let Ψ : N∗ → N∗ be
a morphism, such that Ψ(v) = v. Let Π be a letter-to-letter morphism Π : N∗ → B∗ which
satisfies

Π ◦Ψ = Π ◦Ψ ◦ Π . (6)

Then the infinite word u = Π(v) is invariant under the morphism Π ◦Ψ.

Definition 15. Let v−β ∈ NZ be the infinite word encoding Z−β,` and let there exist a
letter-to-letter morphism Π : N∗ → B∗ from Proposition 14 with B finite of the form
B = {0, 1, . . . , k} chosen as minimal.

We denote
u−β := Π

(
v−β
)

and ψ−β = Π ◦ Φ .

By Proposition 14, u−β is a fixed point of antimorphism ψ−β (and of morphism ψ2
−β).

We conclude this part by observing that a positive base analogue to our method from
Theorem 13 yields an encoding of Z+

β over infinite alphabet N for any (not necessarily
Parry) base β > 1.

When deriving explicit formulas for antimorphisms generating the encoding of Z−β,
we restrict ourselves to the Ito-Sadahiro case ` = −β

β+1
. In particular, we derive the

antimorphisms generating v−β for β satisfying the assumptions of Theorem 12. The case
m = +∞, i.e. with infinite d(`), is illustrated by the following theorem.
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Theorem 16. Assume ` = −β
β+1

, let the string d−β,`(`) = l1l2l3 . . . satisfy 0 < li and
l1 > l2i for all i ≥ 1. Then the antimorphism from Theorem 13 is of the form

Φ(0) = 0l1−11 ,

Φ(2j) = 0l2j+1−1(2j + 1)0l1−l2j−11 for j ≥ 1,

Φ(2j + 1) = 0l2j+1−1(2j + 2)0l1−l2j+2−11 for j ≥ 0.

It holds for any β an Yrrap number and ` = −β
β+1

, the distances ∆′k between consecutive
(−β, `)-integers take only finitely many values and thus the set Z−β,` can be coded by a
bidirectional infinite word u−β over a finite alphabet B ⊆ N. By doing so for eventually
periodic d−β,`(`) = l1l2 . . . lm(lm+1 · · · lm+p)

ω, one finds that a prescription in terms of
coefficients li cannot be written in one formula. Rather it differs dependently on whether
the length of period is shorter or longer, even or odd. The discussion is tedious and in this
thesis, we present explicit results just for some classes of numbers β with infinite periodic
d(`) together with the corresponding primitive morphisms fixing u−β. The subcase of
Theorem 12 with finite d(`) is solved completely.

4.3 Spectral and combinatorial properties

In this thesis we demonstrate that the class of generalized multinacci numbers (i.e. con-
fluent Parry numbers) β plays an exceptional role when it comes to studying spectra of
−β. At the same time, it is exactly the class of bases for which the sets of β-integers and
(−β, `)-integers (according to Ito-Sadahiro definition, i.e. for ` = −β

β+1
) are in certain sense

similar. Let us recall that confluent Parry numbers are algebraic integers with minimal
polynomials of the form

Xd −mXd−1 − . . .−mX − n , where d ≥ 1,m ≥ n ≥ 1 .

Let us emphasize that the assumption ` = −β
β+1

is maintained throughout this entire
section. We recall the definition of spectrum of β, X(β), and immediately follow with its
negative base analogue, with the spectrum of −β, denoted by X(−β):

X(β) :=
{ N∑

j=0

ajβ
j
∣∣∣ N ∈ N, aj ∈ Aβ

}
, X(−β) :=

{ N∑
j=0

aj(−β)j
∣∣∣ N ∈ N, aj ∈ A−β

}
.

A natural question is: for given β > 1, are the sets Z+
β and Z−β similar in any way?

From our point of view, the “similarity” can be expressed by three properties (ordered in
such a way that each one implies all of the previous):

1. both Z+
β and Z−β contain only distances of length ≤ 1

2. the sets of distances in Z+
β and Z−β are the same

3. infinite words encoding Z+
β and Z−β have the same language (which is guaranteed

e.g. in case when morphisms fixing them are conjugated)

Let us recall that two morphisms π, ρ over an alphabet A are conjugated if there
exists a word w ∈ A∗ such that either

wπ(a) = ρ(a)w for all a ∈ A , or π(a)w = wρ(a) for all a ∈ A .
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Note that for the encoding of Z+
β (denoted by uβ or vβ, depending on the finiteness of

its alphabet) there always exists a morphism fixing it. Similarly for the encoding u−β (or
v−β) of Z−β there exists an antimorphism fixing it. Although it does not make sense to
decide whether a morphism ϕ is conjugated to an antimorphism ψ, it suffices to consider
their second iterations ϕ2 and ψ2 as both are morphisms.

We present a negative base analogue to the result of Frougny [Fro92] by stating that
the spectrum X(−β) coincides with the set of (−β)-expansions if and only if β belongs
to a subclass of confluent Parry numbers. Moreover, exactly in those cases the sets of β-
and (−β)-integers are encoded by fixed points of conjugate morphisms.

Theorem 17. Let β > 1. Denote by ϕβ the canonical morphism of β (over a finite or an
infinite alphabet) and ψ−β the antimorphism fixing the infinite word coding Z−β. Then
the following conditions are equivalent:

1. β is a confluent Parry number with minimal polynomial Xd−mXd−1−· · ·−mX−n
with m ≥ n ≥ 1, such that n = m for d even.

2. ϕ2
β is conjugated with ψ2

−β.

3. Z−β = X(−β).

Note that the equivalence 1 ⇔ 3 is not an exact analogue to the result of [Fro92] as
not all confluent Parry numbers satisfy the theorem above. This missing class of confluent
Parry numbers is the subject of the following remark.

Remark 18. Let β be a confluent Parry number of even degree d ≥ 2 with minimal
polynomial p(X) = Xd −m(Xd−1 + . . . + X) − n, m > n ≥ 1. The sets of distances in
Z+
β and Z−β do not coincide, hence ϕ2

β and ψ2
−β are not conjugated. Nevertheless, certain

level of similarity can still be found. Recall that u−β is an infinite word coding Z−β. If
we apply a morphism π(i) : {0, . . . , d− 1}∗ → {0, . . . , d− 1}∗ on u−β, where

π(i) =

{
i if i ∈ {0, . . . , d− 2},
0(d− 1) if i = d− 1,

then one easily verifies that the words uβ and π(u−β) have the same language.

5 Results on the generalization of the unit sum num-
ber problem

In this thesis, we study possible generalizations of known results on representing algebraic
integers by units and also on a related topic, on bounding the lengths of arithmetic
progressions of algebraic integers. As finite sums of units can be actually viewed as linear
combinations of algebraic integers with norm ≤ 1 in modulus, with bounded integer
coefficients, two straightforward generalizations follow. We can consider

� finite sums of algebraic integers with norm in modulus ≤ m when m > 0 (studied
in Subsection 5.2), or

� linear combinations of units with coefficients coming from some given subset of Q
(see Subsection 5.3).
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5.1 Arithmetic progressions of algebraic integers

Denote by OK the ring of algebraic integers in a field K and for m > 0 put

N ∗m := {γ ∈ OK | |N(γ)| ≤ m} ,

and write

t×N ∗m := {γ1 + · · ·+ γt | γi ∈ N ∗m (i ∈ {1, . . . , t})} ,

where t is a positive integer. We prove a generalization of the results of Newman [New90]
and Bérczes et al. [BHP10].

Theorem 19. Let K = Q(α), m > 0 and t > 0. The length of any nonconstant arithmetic
progression in t×N ∗m is at most c1(m, t, d,D(K)), where c1(m, t, d,D(K)) is an explicitly
computable constant depending only on m, t, and on the degree d and discriminant D(K)
of K.

5.2 First generalization - sums of elements of small norm

Jarden and Narkiewicz [JN07] proved that u(OK) ≥ ω for any number field K. To
formulate our next result, we extend the notion of unit sum number, in case that given
ring R is the ring of integers in some number field K.

Definition 20. Let K = Q(α) with the ring of integers OK. The m-norm sum number
um(OK) of OK is defined by

um(OK) :=



t ∈ N if t is minimal such that every γ ∈ OK is a sum of
at most t elements of N ∗m,

ω if every γ ∈ OK is a sum of elements of N ∗m but
there is no bound for the number of summands,

∞ if some γ ∈ OK is not a sum of elements of N ∗m.

(7)

Hence, instead of sums of units we consider sums of integers of bounded norm. Clearly,
u(OK) = u1(OK) holds.

Theorem 21. Let K = Q(α) be and algebraic number field and let m > 0. It holds that
um(OK) ≥ ω, i.e. for every m, t ∈ N there exists γ ∈ OK which cannot be obtained as a
sum of at most t terms from N ∗m.

It is known that for infinitely many number fields K we have u(OK) =∞. In contrast
to this result, the next theorem shows that um(OK) = ω is always valid if m is “large
enough” with respect to the discriminant and the degree of K.

Theorem 22. For every algebraic number field K = Q(α) there exists a positive integer
m0 = m0(D(K), d) depending only on the discriminant and the degree of K, such that for
any m ≥ m0 we have um(OK) = ω, i.e. any γ ∈ OK can be obtained as a sum of elements
from N ∗m.
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5.3 Second generalization - linear combinations of units

At this point let us recall that the field K is called a CM-field, if it is a totally imaginary
quadratic extension of a totally real number field.

Theorem 23. Suppose that either K is not a CM-field, or K is a CM-field containing a
root of unity different from ±1. Then there exists a positive integer ` = ec6(d)R(K) where
c6(d) is a constant depending only on the degree of K, such that any γ ∈ OK can be
obtained as a linear combination of (not necessarily distinct) units of K with coefficients
{1, 1/2, 1/3, . . . , 1/`}.

6 Results on quartic DUG-fields

In the following, let ζµ denote a primitive µ-th root of unity. Hajdu and Ziegler in [HZ14]
provided the following list of number fields which contain all candidates for distinct unit
generated (DUG) fields among totally complex quartic ones.

� Q(ζµ) where µ = 5, 8, 12 or,

� Q(γ) where γ is the root of one of the polynomials X4 −X + 1, X4 +X2 −X + 1,
X4+2X2−2X+1†, X4−X3+X+1‡, X4−X3+X2+X+1‡, X4−X3+2X2−X+2†

or,

� Q(
√
a+ bζ4), with (a, b) = (1, 1), (1, 2), (1, 4), (7, 4)† or,

� Q(
√
a+ bζ3), with (a, b) = (2, 1), (4, 1), (8, 1), (3, 2), (4, 3), (7, 3), (11, 3), (5, 4),

(9, 4), (13, 4), (12, 5), (11, 7), (9, 8), (15, 11), (19, 11)†, (17, 12)†, (17, 16)† or,

� Q(ζ4,
√

5) or Q(ζ3,
√
d), with d = 5, 6, 21 or,

� Q
(√
−1−

√
2
)

or Q
(√
−1+

√
5

2

)
.

Table 1: Candidates for totally complex quartic DUG fields. Markers † and ‡ are necessary
for the statement of Theorem 24.

The authors of [HZ14] only managed to show that the fields K = Q(γ), where

γ ∈
{
α, ζ5, ζ8, ζ12,

√
−1−

√
2,

√
−1+

√
5

2
, ζ3 +

√
5, ζ4 +

√
5

}
and α is a root of the polynomial X4 +X2−X+1 are indeed DUG. They also conjectured
that all the remaining fields in Table 1 are DUG as well.

We extend the method of Thuswaldner and Ziegler from [TZ11] to totally complex
number fields and apply this method to extend the list of DUG-fields, i.e. those fields K
with their unit sum height ω(K) equal to one. Unfortunately we failed in proving that
all fields listed in Table 1 are distinct unit generated, but at least we can provide upper
bounds for the unit sum height.

Theorem 24. If K is a totally complex quartic field of the list in Table 1, then ω(K) ≤ 3.
Moreover all such fields are DUG except those marked with † or ‡. Those fields marked
with † satisfy at least ω(K) ≤ 2 and those marked with ‡ satisfy only ω(K) ≤ 3.
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In the following we generalize a theorem from [TZ11] to the case which includes totally
complex number fields. The real Pisot number is replaced by the notion of complex
Pisot number, i.e. a nonreal algebraic integer α with |α| > 1 such that the remaining
conjugates other than α are less than one in modulus.

With this generalization at hand, we consider the case that a totally complex number
field K contains a primitive µ-th root of unity with µ > 2. This enables us to prove
Theorem 24 up to the second item in the list of fields given there (see Subsection 6.2). In
Section 6.3, we apply a variant of our method to the remaining fields and prove Theorem
24 up to the case that K = Q(γ), where γ is a root of X4 −X + 1. This special case is
solved in Subsection 6.4 independently, by a combinatorial approach.

As pointed out already in [TZ11], the problem of determining ω(K) is connected to
nonstandard positional representation of numbers. Consider a field K of unit rank 1,
which covers, besides totally real quadratic and not totally real cubic fields also totally
complex quartic fields which are subject of this paper. By Dirichlet’s theorem, all units
in K are of the form ζ iµε

j, i, j ∈ Z, where ε is the fundamental unit and ζ iµ for 1 ≤ i ≤ µ
form a finite set of all roots of unity in K.

The fact that ω(K) ≤ w can be rephrased by saying that every element of OK can be
represented as

∑k
j=l ajε

j, where the ‘digits’ aj take values in the finite set

Σ = Σµ(w) :=
{ µ∑

i=1

diζ
i
µ

∣∣∣ 0 ≤ di ≤ w for 1 ≤ i ≤ µ
}
. (8)

Assume that the fundamental unit ε also generates the integral basis of the ring of
integers in K, i.e. OK = Z[ε]. Then the question reformulates to asking whether the set
of numbers with finite expansion in base ε with digits in Σ satisfies

FinΣ(ε) :=
{ k∑

i=l

aiε
i
∣∣∣ k, l ∈ Z, ai ∈ Σ

}
= Z[ε, ε−1] = Z[ε] , (9)

which will be true, if FinΣ(ε) is closed under addition. This is a generalization of the
so-called finiteness property studied in numeration systems, first introduced for Rényi
β-expansions of real numbers by Frougny and Solomyak [FS92].

6.1 Determining the upper bounds for the unit sum length

Let K be a number field with the ring of integers OK of degree d = s + 2t, where, as
usual, s and 2t denote the number of real and nonreal conjugates of the field primitive
element, respectively. Also let us fix real field isomorphisms σ1, . . . , σs and the complex
ones σs+1 = σ̄s+t+1, . . . , σs+t = σ̄s+2t of K. For α ∈ K we denote by α(i) = σi(α) the
conjugates of α and by convention we write α = α(s+1) (for in the following we consider
nonreal fields K)

Let ε ∈ OK be a complex Pisot number, i.e. such that |ε| > 1 and |ε(i)| < 1 for all
i = 1, . . . , s+ t, i 6= s+ 1. Given a finite set Σ ⊂ OK , denote

Ci := max{|c(i)| | c ∈ Σ} , for i ∈ {1, . . . , s+ t}, i 6= s+ 1.

Consider a compact set P ⊂ C, containing at least a neighborhood of 0 and denote by
B(ε,Σ, P ) the finite set called cylinder, defined by

B(ε,Σ, P ) :=
{
α ∈ OK

∣∣∣α ∈ P and |α(i)|≤ Ci
1− |ε(i)|

for i ∈ {1, . . . , s+ t} , i 6= s+ 1
}
.
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Theorem 25. Let ε ∈ OK be a complex Pisot number. With the notation above, assume
that

εP ⊂
⋃
a∈Σ

(a+ P ) . (10)

Then for each α ∈ OK there exist N, n ∈ N such that

αεN = β +
n∑
i=0

ciε
i, (11)

with ci ∈ Σ and β is contained in the finite set B(ε,Σ, P ). The elements of B(ε,Σ, P )\{0}
will be called critical points.

6.2 Application to fields with nontrivial roots of unity

Assume that K contains a µ-th root of unity with µ > 2 and denote by ζµ some primitive
µ-th root of unity. The digit set Σ will be taken, as in (8), by the set of all possible sums
of roots of unity with bounded coefficients.

First, let us assume that K is a complex (not necessarily quartic) field that contains a
fourth root of unity ζ4 = ı. Given a complex Pisot number ε ∈ OK , we apply Theorem 25
to the case where P ⊂ C is the square with vertices ±1±ı

2
and obtain a simple criterion

such that the covering property (10) holds:

Lemma 26. Let P ⊂ C be the square with vertices ±1±ı
2

. Let η = ε1+ı
2

, then (10) is
satisfied, provided

max{|<(η)|, |=(η)|} ≤ 1 + 2w

2
.

We may then apply Lemma 26 together with Theorem 25 to the fields Q(
√

1 + ζ4),
Q(
√

1 + 2ζ4), Q(
√

1 + 4ζ4) and Q(
√

7 + 4ζ4). For the complex Pisot number ε we take
the fundamental unit of K. Indeed, the fundamental unit ε can be chosen in such a way
that |ε| = |ε| > 1. Moreover, as ε is a unit, i.e. |N(ε)| = 1, it immediately follows that the
remaining two conjugates are in modulus less than 1. By a computer search we were able
to confirm that all critical points can be written in the form

∑−B
k=−1 siε

i with si ∈ Σ4(w).
Now, let us assume that K is a complex (not necessarily quartic) field that contains

sixth roots of unity. In this case we choose P to be a regular hexagon. Again, ε is the
fundamental unit, which can be chosen to be a complex Pisot number. We derive a similar
covering property criterion to Lemma 26, which then, in an analogous way, leads to the
solution in case of fields Q(

√
a+ bζ3), with (a, b) = (2, 1), (4, 1), (8, 1), (3, 2), (4, 3), (7, 3),

(11, 3), (5, 4), (9, 4), (13, 4), (12, 5), (11, 7), (9, 8), (15, 11), (19, 11), (17, 12), (17, 16) and
Q(ζ3,

√
d), with d = 6, 21.

6.3 Application to five special cases

Now we consider the remaining five number fields in Theorem 24, namely those which do
not contain any roots of unity ζµ for µ > 2. The same approach as in the previous section
will not lead to success, since the alphabet Σ2(w) = {−w, . . . , 0, . . . , w} is contained in
the real line.

Instead, we take the digit set

Σ = {d0 + d1ε̃ | − w ≤ d0, d1 ≤ w} ,
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and expand the number α ∈ OK in base ε = ε̃2, where ε̃ is a fundamental unit with |ε̃| > 1.
The compact set P ⊂ C is taken to be the parallelogram with vertices ±1±ε̃

2
. Again, a

covering property criterion is derived, leading to the results for fields K = Q(γ) with γ
having minimal polynomial X4−X3 +X2 +X + 1, X4−X3 +X + 1, X4 + 2X2− 2X + 1,
X4−X3 +2X2−X+2 and X4−X+1 (which is further improved in the next subsection).

6.4 Combinatorial approach

By using different means, we prove that K = Q(γ), where γ is a root of the polynomial
X4 −X + 1, is DUG. Although we already proved in the previous section that ω(K) ≤ 2
we do not assume this result in this section.

Proposition 27. The field K = Q(γ) with γ being a root of the polynomial X4 −X + 1
is DUG.

In this approach, we use an equivalent formulation of DUG property. Since {1, γ, γ2, γ3}
is an integral basis of the ring of integers OK , we have OK = Z[γ] = Z[γ, γ−1] and we can
write every element α ∈ OK in the form α =

∑∞
n=−∞ vnγ

n with vn ∈ Z and vn 6= 0 for at
most finitely many indices. Such a γ-representation of α can be written as

α = · · · v2v1v0 • v−1v−2 · · · ,

where the fractional point • separates between the coefficients at negative and nonnegative
powers of the base γ. We are only interested in the fact that nonvanishing coefficients in
the γ-representation are finitely many. Thus we will abbreviate representation above by
the finite word vkvk−1 · · · v`+1v`, where the indices k and ` are such that vn = 0 for all n > k
and all n < `, without marking the fractional point. Note that the γ-representation is not
unique. Since γn(γ4− γ + 1) = 0 for all n, position-wise addition or subtraction of 1001̄1,
with 1̄ = −1, at any position does not change the value of α but only its γ-representation,
i.e. the words vk · · · vnvn−1vn−2vn−3vn−4 · · · v` and vk · · · (vn + 1)vn−1vn−2(vn−3 − 1)(vn−4 +
1) · · · v` represent the same element α ∈ OK . This application of w = 10011 is called the
rewriting rule.

From this point of view, any element α ∈ OK has some γ-representation

x3x2x1x0 , xi ∈ Z . (12)

Moreover, since γ is the fundamental unit of K = Q(γ) and there are no nonreal roots of
unity in K, we have

UK = {±γk | k ∈ Z} .
Consequently, if α ∈ OK is also a sum of distinct units, there exists another γ-representation
of the form

vkvk−1 · · · v0v−1 · · · v` , vi ∈ {1, 0, 1}, `, k ∈ Z . (13)

Hence, if we want to prove that the field K is DUG, we have to show that any
representation of the form (12) can be rewritten into (13) without changing the value of
the represented number.

Let us note that the method used in the proof of Proposition 27 is very particular for
the field K = Q(γ), where γ is a root of the polynomial X4 −X + 1, which provided us
rewriting rules w with low weight but large support. We failed in proving an analogous
result for the remaining cases of Theorem 24, since the corresponding fields seem not to
provide such rewriting rules.
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The possibility to rewrite any finite word with integer digits into the alphabet Σ =
{−1, 0, 1} is closely connected to the finiteness property (9) of numeration systems. Be-
ing in general a highly nontrivial problem, only few results are known. For example,
in [FPS11], it was shown that for any algebraic integer γ without conjugates on the unit
circle there exists an alphabet Σ of consecutive integers, such that FinΣ(γ) is closed under
addition. This is however very far from stating that Σ = {−1, 0, 1} is sufficient.

7 Conclusions

Our results on (−β)-expansions can serve as an illustration that although numerous analo-
gies between expansions in positive and negative base actually hold, negative base results
are often much more complicated and technical, when compared to their positive base
counterparts. Nevertheless it makes sense to study (−β)-expansions further. For in-
stance, in a positive base, the fact that the expansions of negative numbers are “artifi-
cially” defined only by prefixing a minus sign to the expansions of positive numbers may
be inconvenient. Consequently, the encoding of the whole set Zβ cannot be generated by
a single morphism. This phenomenon is eliminated by using a negative base.

The utility of systems with negative base was confirmed also in the study of generalized
spectra of numbers. Also arithmetical aspects of negative bases may sometimes appear
easier than in the case of positive bases, see for instance [FPS13]. Deeper knowledge of
(−β)-expansions in general can extend the repertoire for already known applications, for
instance in case of the so-called β-encoders.

Considering how much is already known about Rényi β-expansions, there still remain
numerous properties, phenomena and analogies yet to uncover about (−β)-expansions,
let alone about any further generalizations. For instance, we used a parameter ` = `(β)
and studied (−β, `)-expansions of numbers from [`, ` + 1) for various values of the base
−β. Instead of this approach, it could be interesting to proceed the other way around,
i.e. to fix the base −β and then study how various objects, such as the reference strings
in the admissibility criterion, the set Fin(−β) of numbers with finite expansions or the
so-called (−β)-shift, are influenced by changing the value of `. As the finiteness property
has already been studied in the Ito-Sadahiro case for quadratic and some cubic Pisot
bases, it makes sense to further study for instance the length of the fractional part arising
when adding, subtracting or multiplying two (−β)-integers.

To our knowledge, little attention has been so far dedicated to the generalization of
results about the so-called univoque numbers and unique expansions in negative bases.
For β-expansions, this topic was introduced in [EJK90] and further studied in many works.

One can view both β- and (−β)-expansions as particular cases of positional represen-
tation in a base α ∈ C with digits coming from an alphabet A ⊂ C. Various approaches
have been chosen in this field so far, let us mention for instance the study of expansions in
a real base defined by a generalization of the β-transformation e.g. in [KS12] and [Gór07].
From other interesting approaches, one can mention canonical number systems (CNS) or
shift radix systems (SRS).

As we demonstrated, several number-theoretical problems as the DUG property of
number fields, hence indirectly also the unit sum number problem, are connected to the
arithmetic properties in positional numeration.

Concerning the DUG property, two distinct approaches were applied to obtain the
results in this work. The geometrical one was based on an approximation of arbitrary
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algebraic integer by its representation in base equal to the fundamental unit of the field
with the error term coming from a bounded set P ⊂ C, while the combinatorial one
rephrased the problem in terms of rewriting representations of algebraic integers into
representations of another type. The geometrical approach assumed P to be a square, a
parallelogram or a hexagon. One could study whether a choice of a different shape (maybe
a self-similar and fractal one) further improves our recent results. Similarly, although the
combinatorial approach using the rewriting rules seemed too particular for the one field
considered, it would be useful to discover a modification which would provide good results
also for the other fields from the given list of candidates.

Nevertheless, in general, both the unit sum number problem and the DUG property
themselves are far from the complete solution as all the available results providing clas-
sification of number fields with respect to the unit sum number and the unit sum height
are limited to only low degree fields, namely those with unit rank 1. There are definitely
opportunities for further research and it would be remarkable if more connections similar
to those presented in this thesis were found in the future.
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Shrnutí

Tato doktorská práce se věnuje studiu nestandardních reprezentací čísel. Konkrétně se
zabýváme dvěma hlavními tématy, pozičním reprezentacím reálných čísel v obecné zá-
porné bázi a dále reprezentacemi algebraických celých čísel v číselných tělesech pomocí
algebraických jednotek. Ve speciálním případě využíváme přímou souvislost mezi těmito
na první pohled zdánlivě nesouvisejícími reprezentačními problémy.

V první části práce studujeme tzv. (−β)-rozvoje, definované v práci Ita a Sadahira jako
přímá analogie k Rényiho β-rozvojům. Zavádíme zobecnění (−β)-rozvojů a studujeme
jeho vlastnosti, s důrazem na rozhodování o tzv. přípustnosti řetězců cifer. Studujeme
strukturu množiny (−β)-celých čísel, značené Z−β, a popisujeme jak množinu délek mezer
mezi sousedními prvky v Z−β, tak antimorfismy, jejichž pevné body množinu Z−β kódují.
Dále ukazujeme výjimečnost třídy tzv. konfluentních Parryho čísel na podobnosti množin
β-celých a (−β)-celých čísel a na jejich blízkém vztahu se zobecněnými spektry.

V druhé části se věnujeme zobecnění tzv. unit sum number problému, neboli rozhod-
nutí o tom, zda lze všechna algebraická celá čísla v daném číselném tělese vyjádřit jako
sumy jednotek. Uvažujeme dvě možná zobecnění, ve kterých sumy jednotek nahrazu-
jeme buď sumami algebraických celých čísel s omezenou normou nebo lineárními kom-
binacemi jednotek s racionálními koeficienty. U obou zobecnění charakterizujeme pří-
pady, ve kterých jsou zmíněné reprezentace celých čísel možné. Nakonec připomeneme
definici tzv. DUG-těles, těles v nichž je možné každé algebraické celé číslo reprezento-
vat sumou vzájemně různých jednotek, a pomocí nových metod rozšíříme seznam totálně
komplexních kvartických těles, které jsou DUG-tělesy.




